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Time evolution of the eddy viscosity in two-dimensional Navier-Stokes flow

Marta Chaves and Sı´lvio Gama
Departamento de Matema´tica Aplicada, CMAUP, Universidade do Porto, Rua das Taipas 135, 4050 Porto, Portugal

~Received 9 June 1999!

The time evolution of the eddy viscosity associated with an unforced two-dimensional incompressible
Navier-Stokes flow is analyzed by direct numerical simulation. The initial condition is such that the eddy
viscosity is isotropic and negative. It is shown by concrete examples that the Navier-Stokes dynamics stabilizes
negative eddy viscosity effects. In other words, this dynamics moves monotonically the initial negative eddy
viscosity to positive values before relaxation due to viscous term occurs.

PACS number~s!: 47.10.1g, 47.27.2i
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Molecular viscosityn has its origin in the collisions be
tween the particles of a fluid: if the flow is submitted to
shear, one obtains a momentum flux proportional~and with
opposite sign! to the velocity gradient. The crucial hypoth
esis for obtainingtransport coefficients, like the molecular
viscosity, is thescale separation«05l 0 /L0!1: macro-
scopic phenomena should occur on scalesL0 much larger
than the mean free pathl 0 of the particles of the fluid. By
analogy, if one liquid is macroscopically selforganized
cellular motion~typical size of the cells;l ), one gets the
so-callededdy viscosity, which is used to describe the flow
motion on very large scalesL@l . The basic cellular motion
may have different sources, e.g. a small-scale instability
the present case, we will assume that the basic flow is b
maintained by an external force. The idea of eddy visco
was developed on earlier times by Boussinesq@1# and his
successors@2,3#, for the modeling of~i! turbulence,~ii ! sev-
eral astrophysical phenomena,~iii ! theK-e industrial model-
ing, etc. However, only recently it was possible to develo
complete theory for the eddy viscosities, since certain m
ingredients like the scale separation«5l /L and the absence
of AKA effects were absent in the previous phenomenolo
cal approaches@4#.

The aim of this work is to follow the time evolution of th
eddy viscosity of two-dimensional incompressible liquid
The dynamics of these fluids are governed by the w
known incompressible Navier-Stokes equations. When t
solutions are analyzed on very large scales, their molec
viscosityn is renormalized into a fourth-order eddy viscos
tensorn i j l m which, assuming that the eddy cellular motio
i.e., the basic flow possesses the symmetries (S1) or parity-
invariance, and (S2) or sixfold rotation symmetry, is re
duced ton i j l m5neddyd j l d im , whereneddy is the usual eddy
viscosity~isotropy of the fourth-order eddy viscosity tenso!
@4#. If neddy is negative@5#, then the linear dissipative term
associated to the large scale dynamics~scales;L) will in-
duce a large scale instability. This situation is a rather co
mon phenomenon: about 33% of the two-dimensional ba
flows displaying the symmetries (S1) and (S2), with an
initial energy spectrumE(K);K23, lead to a negative edd
viscosity when lowering the molecular viscosity@6#. It is,
therefore, relevant to find out what will happen to these flo
~which, for the moment, merely describe an initial random
chosen state! when they are subjected to the dynamics
duced by the Navier-Stokes equations.
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Briefly, let us summarize the mathematical machinery t
allow us to compute eddy viscosities in two dimensions@5#
@6#. Consider the two-dimensional unforced Navier-Stok
equation, which in a stream functionC(t;x1 ,x2) formalism
reads

] t]
2C1J~]2C,C!5n]2]2C. ~1!

Here, J is the Jacobian,]2 is the Laplacian andn is the
molecular viscosity. The velocity fieldv5(v1 ,v2) is defined
as v i5« i j ] jC ~the tensor« i j is the antisymmetric tenso
having«1252«2151; zero, otherwise!. AssumeC periodic
in x1 and x2. Let C t(x1 ,x2) be the solution of Eq.~1! ini-
tialized by the periodic initial conditionC0(x1 ,x2). Then,
under the symmetries (S1) and (S2), the two-dimensional
eddy viscosityneddy(C t ,n), associated to the basic flowC t
with molecular viscosityn, is given by

neddy~C t ,n!5n2^Qt~]2C t!&22^~]1St!~]2C t!&, ~2!

where^d& denotes the average over the space periodici
and] i5]/]xi ( i 51,2). The quantitiesQt andSt are the so-
lutions of the auxiliary problems:

ÃtQt5]2]2C t , ~3!

ÃtSt5~]2]2C t!Qt12J~C t ,]1Qt!

2~]2C t!~]2Qt!14n ]1]2Qt . ~4!

Here,Ãt is the linearized Navier-Stokes operator:

Ãtc[J~]2c,C t!1J~]2C t ,c!2n]2]2c, ~5!

restricted to functions of zero mean value, which have
same space-time periodicity as the basic flowC t .

Let us state our problem. Assume that we are given
initial stream functionC0 and a correspondent molecula
viscosity n such that the associated eddy viscos
neddy(C0 ,n) is negative. We want to study the quanti
2118 ©2000 The American Physical Society
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FIG. 1. Time evolution of the eddy viscosityneddy of six random flows~excepted where indicated! versustheir ~a! mean energy over its
initial mean energy, and~b! time. It is clearly seen that the eddy viscosity instantly increases to positive values when the Navier-
dynamics operates on the flows; dotted line: the decorated hexagonal flow introduced in Ref.@5#, n50.55; solid lines: 3 runs withn
50.205; dot-dashed line:n50.21; long-dashed line:n50.23.
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neddy(C t ,n), for t.0, in particular, to know what happen
to its sign. In order to investigate this, we start by consid
ing pairs (C0 ,n) such that:

C0 satisfies (S1) and (S2); this is done by choosing
different lengths for the two-dimensional periodicity bo
(L152p andL252p/A3), and selecting wavevectors of th
form k5(2a1b)(1,0)1bA3(0,1), with a,b signed inte-
gers, such that the Fourier modes ofC0, which can be ob-
tained by rotations ofp/3 have the same real Fourier amp
tudes;

C0 has an energy spectrum;K23 (1<K<7; zero, oth-
erwise!, with mean energy renormalized to unity;

neddy(C0 ,n),0.
To encounter such pairs several stratagies can be

lowed, in particular, the one mentioned in Ref.@6#. When
one of these pairs is identified, we numerically computeC t ,
using Eq.~1! initialized with (C0 ,n), and find the stationary
solutionsQt ,St of the auxiliary problems~3! and~4! in order
to calculate~2!. To perform these computations, we use t
standard pseudospectral method withN2 Fourier modes, with
deliasing by truncation beyond wave numberN/3 @7#, and
the slaved-frog temporal scheme@8#. The results reported in
this letter require onlyN564 or N5128 and they are no
sensitive if the resolutionN is duplicated~the Reynolds num-
bers are;10).

Several runs were performed under these conditions
all look similar. Figure 1 presents six of these runs. It
remarkable that in all the casesneddy(C t ,n) always increases
from the very beginning, i.e.,dneddy(C t ,n)/dt.0, for t
P@0,T* #, whereT* corresponds to the time where the ed
-

l-

nd

viscosity reaches its maximum value, which is positive. T
time interval@0,T* # is the period of time where the Navier
Stokes dynamics is dominated by the nonlinearities, bey
which all the dynamics is relaxed by dissipative terms.

A simple observation shows that, since the Navier-Sto
Eq. ~1! is unforced, as time goes by, we haveC t→0, which
implies Qt ,St→0, and thus neddy(C t ,n)→n, i.e.,
neddy(C t ,n) becomes always positive. This can be observ
in Fig. 1~b!. The increase of the eddy viscosity mention
above is not due to the previous purely dissipative effe
Indeed, Fig. 1~a!, plotting the eddy viscosityneddy versusthe
dimensionless quantitŷv2/2&/E0 ~the mean energy of the

fluid ^ 1
2 v2&5 1

2 1/L11/L2*0
L1*0

L2v2(t;x1 ,x2) dx1dx2, over its

initial mean energyE05^ 1
2 v2(0;x1 ,x2)&, shows that the ini-

tial negative isotropic eddy viscosity immediately increas
to positive values before relaxation due to viscous term
curs @9#.

In summary, we have performed numerical experime
on the unforced two-dimensional Navier-Stokes equati
initialized with initial conditions and a given molecular vis
cosity such that the corresponding initial eddy viscosity
negative. We have shown that the Navier-Stokes dynam
stabilizes negative isotropic geometrical eddy systems in
sense that these systems, when submitted to the Na
Stokes dynamics, evolve to topological configurations ch
acterized by positive isotropic eddy viscosities.

We are grateful to M. Vergassola for helpful discussio
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