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Time evolution of the eddy viscosity in two-dimensional Navier-Stokes flow
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The time evolution of the eddy viscosity associated with an unforced two-dimensional incompressible
Navier-Stokes flow is analyzed by direct numerical simulation. The initial condition is such that the eddy
viscosity is isotropic and negative. It is shown by concrete examples that the Navier-Stokes dynamics stabilizes
negative eddy viscosity effects. In other words, this dynamics moves monotonically the initial negative eddy
viscosity to positive values before relaxation due to viscous term occurs.

PACS numbes): 47.10+g, 47.27—i

Molecular viscosityy has its origin in the collisions be- Briefly, let us summarize the mathematical machinery that
tween the particles of a fluid: if the flow is submitted to a allow us to compute eddy viscosities in two dimensifsk
shear, one obtains a momentum flux proportioiaald with  [6]. Consider the two-dimensional unforced Navier-Stokes
opposite sighto the velocity gradient. The crucial hypoth- equation, which in a stream functiok(t;x;,x,) formalism
esis for obtainingtransport coefficientslike the molecular reads
viscosity, is thescale separationsg=/"y/Ly<1: macro-
scopic phenomena should occur on scalgsmuch larger 5 5 —
than the mean free pathi, of the particles of the fluid. By "W +I(°W, V) =vd“9°V. €y
analogy, if one liquid is macroscopically selforganized in
cellular motion(typical size of the cells~/), one gets the Here,J is the Jacobiang® is the Laplacian and is the
so-callededdy viscositywhich is used to describe the flow Molecular viscosity. The velocity field=(v,,v5) is defined
motion on very large scale&> /. The basic cellular motion as V;=g;;d;'¥ (the tensore;; is the antisymmetric tensor
may have different sources, e.g. a small-scale instability. If1avinge ;,= —e,=1; zero, otherwise Assume¥ periodic
the present case, we will assume that the basic flow is bein X1 andx,. Let ¥(x;,X,) be the solution of Eq(1) ini-
maintained by an external force. The idea of eddy viscosityialized by the periodic initial conditionV(x;,x;). Then,
was developed on earlier times by Boussingshand his —under the symmetriesS{) and §2), the two-dimensional
successorf2,3], for the modeling ofi) turbulence i) sev-  eddy viscosityreqq( WV, v), associated to the basic flow,
eral astrophysical phenomeriii) the K-e industrial model- ~ with molecular viscosity, is given by
ing, etc. However, only recently it was possible to develop a
complete theory for the eddy viscosities, since certain main

ingredients like the scale separatior //£ and the absence Veday( Vi, ) = v—(Qu(d2W)) = 2((91S) (9. W), (2
of AKA effects were absent in the previous phenomenologi- o
cal approachef4]. where(@®) denotes the average over the space periodicities

The aim of this work is to follow the time evolution of the @ndd;=a/dx; (i=1,2). The quantitie®, andS; are the so-
eddy viscosity of two-dimensional incompressible liquids. lutions of the auxiliary problems:
The dynamics of these fluids are governed by the well-
known incompressible Navier-Stokes equations. When their -
solutions are analyzed on very large scales, their molecular AQ= 0,07, 3
viscosity v is renormalized into a fourth-order eddy viscosity
tensorv;; ., Which, assuming that the eddy cellular motion, _
i.e., the basic flow possesses the symmetr&is) (or parity- ASi=(0,0°V) Qi+ 2J(¥,,5,Qy)
invariance, and $2) or sixfold rotation symmetry, is re- 9 9
duced tov;j /= Veqayd;, Sim, Wherevegq, is the usual eddy — (¥ )(0°Qp) +4v 9,9°Q; . 4
viscosity (isotropy of the fourth-order eddy viscosity tensor - . . .
[4]. If veqqyis negative[5], then the linear dissipative term Here, A is the linearized Navier-Stokes operator:
associated to the large scale dynam®sales~ £) will in-
duce a large scale instability. This situation is a rather com- -
mon phenomenon: about 33% of the two-dimensional basic Ap=3(P, V) + (W ) — vd* )
flows displaying the symmetriesS{) and S2), with an
initial energy spectruni(K)~K 3, lead to a negative eddy restricted to functions of zero mean value, which have the
viscosity when lowering the molecular viscosit§]. It is,  same space-time periodicity as the basic f.
therefore, relevant to find out what will happen to these flows Let us state our problem. Assume that we are given an
(which, for the moment, merely describe an initial randomlyinitial stream functionW, and a correspondent molecular
chosen statewhen they are subjected to the dynamics in-viscosity v such that the associated eddy viscosity
duced by the Navier-Stokes equations. veaa(Wo,7) is negative. We want to study the quantity
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FIG. 1. Time evolution of the eddy viscosibyq, of six random flowsgexcepted where indicatggtersustheir (a) mean energy over its
initial mean energy, ancb) time. It is clearly seen that the eddy viscosity instantly increases to positive values when the Navier-Stokes
dynamics operates on the flows; dotted line: the decorated hexagonal flow introduced [B]Ref0.55; solid lines: 3 runs withy
=0.205; dot-dashed line»=0.21; long-dashed linez=0.23.

Veaa( W, v), for t>0, in particular, to know what happens Viscosity reaches its maximum value, which is positive. The
to its sign. In order to investigate this, we start by considertime interval[0,T*] is the period of time where the Navier-
ing pairs Wy, v) such that: Stokes dynamics is dominated by the nonlinearities, beyond
WV, satisfies 61) and S2); this is done by choosing Wwhich all the dynamics is relaxed by dissipative terms.
different lengths for the two-dimensional periodicity box A simple observation shows that, since the Navier-Stokes
(L,=27 andL,=27/+/3), and selecting wavevectors of the EQ. (1) is unforced, as time goes by, we ha¥g—0, which
form k=(2a+ B)(1,0)+ 83(0,1), with ,3 signed inte- implies Q;,§—0, and thus veg(¥i,¥)—v, e,
gers, such that the Fourier modesbf, which can be ob-  Veda('Vt,7) becomes always positive. This can be observed
tained by rotations ofr/3 have the same real Fourier ampli- in Fig. 1(b). The increase of the eddy viscosity mentioned

tudes: above is not due to the previous purely dissipative effect.
W, has an energy spectrumK ~3 (1<K<7; zero, oth- Indeed, Fig. 1a), plotting the eddy viscosityeqqy versusthe

erwise, with mean energy renormalized to unity; dimensionless quantityv?/2)/E, (the mean energy of the
Veaaf Wo,7)<O0. fluid (3v2)=21/L;1/L,0 1f g2v2(t;X1,Xo) dXgdX,, OVer its

To encounter such pairs several stratagies can be fo
lowed, in particular, the one mentioned in REB]. When
one of these pairs is identified, we numerically complite
using Eq.(1) initialized with (¥, v), and find the stationary
solutionsQ; ,S; of the auxiliary problem$3) and(4) in order
to calculate(2). To perform these computations, we use the
standard pseudospectral method withFourier modes, with
deliasing by truncation beyond wave numbet3 [7], and
the slaved-frog temporal scherf&. The results reported in

lnitial mean energ¥Eo={(3v2(0;x1,X,)), shows that the ini-
tial negative isotropic eddy viscosity immediately increases
to positive values before relaxation due to viscous term oc-
curs[9].

In summary, we have performed numerical experiments
on the unforced two-dimensional Navier-Stokes equations
initialized with initial conditions and a given molecular vis-
cosity such that the corresponding initial eddy viscosity is
; ) negative. We have shown that the Navier-Stokes dynamics
this letter require onlyN=64 or N=128 and they are not gapijizes negative isotropic geometrical eddy systems in the
sensitive if the resolutioN is duplicatedthe Reynolds num-  ¢ance that these systems, when submitted to the Navier-

bers are~10). o Stokes dynamics, evolve to topological configurations char-
Several runs were performed under these conditions ang-ierized by positive isotropic eddy viscosities.

all look similar. Figure 1 presents six of these runs. It is

remarkable that in all the casegyq(V,v) always increases We are grateful to M. Vergassola for helpful discussions.
from the very beginning, i.e.dveyq(Vy,v)/dt>0, for t  The work of MC was supported by PRAXIS-XXI 3.1/CEG/
e[0,T*], whereT* corresponds to the time where the eddy 2511/95.
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